Journal of Organometallic Chemistry, 371 (1989) 121–127 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09873

Synthesen von Aryl(halogeno)platin(II)-Verbindungen mit großflächigen und sterisch anspruchsvollen Aryl-Liganden

Hans-Albert Brune *a, Günther Schmidtberg b und Claus Weisemann a

Lehrstuhl für Organische Chemie I^a und Sektion Massenspektrometrie^b der Universität Ulm, Oberer Eselsberg, D-7900 Ulm / Donau (B.R.D.)

(Eingegangen den 7. Februar 1989)

Abstract

The usefulness of the reaction between trialkyl(aryl)stannanes and dihalogeno(η^4 -diene)platinum(II) has been tested with regard to the synthesis of sterically hindered (aryl)(halogeno)(η^4 -diene)platinum(II) compounds. As examples for the utility of the method the following complexes have been prepared: (aryl)(chloro)(1,2,5,6- η^4 -cycloocta-1,5-diene)platinum(II) (aryl = 1-naphthyl; 2-methylnaphth-1-yl; 2-ethoxynaphth-1-yl), (1,2,5,6- η^4 -cycloocta-1,5-diene)(iodo)(1-naphthyl)platinum(II) and (aryl)(chloro)(2,3,5,6-bicyclo[2.2.1]hepta-2,5-diene)-platinum(II) (aryl = 1-naphthyl; 2-methylnaphth-1-yl; 2-ethoxynaphth-1-yl; 2-ethoxynaphthyl)platinum(II) (aryl = 1-naphthyl) (

Zusammenfassung

Die Anwendungsmöglichkeit der Reaktion zwischen Trialkyl(aryl)stannanen und Dihalogeno(η^4 -dien)platin(II) wurde im Hinblick auf die Synthese sterisch gehinderter (Aryl)(halogeno)(η^4 -dien)platin(II)-Verbindungen untersucht. Als Beispiel für die Brauchbarkeit dieser Methode wurden folgende Verbindungen hergestellt: (Aryl)(chloro)(1,2,5,6- η^4 -cycloocta-1,5-dien)platin(II) (Aryl = 1-Naphthyl; 2-Methyl-napht-1-yl; 2-Ethoxynaphth-1-yl), (1,2,5,6- η^4 -cycloocta-1,5-dien)(iodo)(1-naphthyl)-platin(II) und (Aryl)(chloro)(2,3,5,6- η^4 -bicyclo[2.2.1]hepta-2,5-dien)platin(II) (Aryl = 1-Naphthyl; 2-Methylnaphth-1-yl; 2-Ethoxynaphth-1-yl; 2-Ethoxynaphth-1-yl; 2-Methylnaphth-1-yl; 2-Methoxynaphth-1-yl; 2-Ethoxynaphth-1-yl; 2-Methylnaphth-1-yl; 2-Methoxynaphth-1-yl; 2-Ethoxynaphth-1-yl; 2-Methoxynaphth-1-yl; 2-Methoxynaphth

Kürzlich berichteten wir über die Synthesen von Verbindungen des Typs *cis*-Bis(1-naphthyl)bis(ligand)platin(II) mit voluminösen Substituenten in den 2- bzw. 4-Positionen der Naphthyl-Liganden [1]. Diese Verbindungen dienten zur Aufklärung des Mechanismus der thermischen und licht-induzierten reduktiven Eliminierung von Biarylen aus den Verbindungen *cis*-Bis(aryl)bis(ligand)platin(II) [2-4]. In diesem Zusammenhang benötigten wir auch solche Verbindungen dieses Typs, in denen die beiden platin-gebundenen Naphthalin-Ringe – um sie über ihre Substituenten unterscheidbar zu machen – unterschiedlich substituiert sein sollten. Zur Synthese dieser "unsymmetrisch" substituierten Bis(naphthyl)platin-Verbindungen planten wir, zunächst Verbindungen vom Typ Chloro(naphthyl)bis(ligand)platin(II) darzustellen, in denen anschließend der noch vorhandene Chloro-Ligand durch einen zweiten, andersartig substituierten Naphthyl'-Liganden zum (Naphthyl)(naphthyl')bis(ligand)platin(II) substituiert werden sollte.

(Aryl)(chloro)bis(ligand)platin(II)-Verbindungen konnten bisher auf zwei prinzipiell verschiedenen Wegen synthetisiert werden:

1. Durch Reaktion äquimolarer Anteile von Aryllithium- bzw. Arylmagnesium-Verbindungen mit Dichlorobis(ligand)platin(II)-Verbindungen. Hierbei ließ sich jedoch – sogar bei Anwendung eines beträchtlichen Unterschusses der lithium- bzw. magnesium-organischen Edukte – die Entstehung beträchtlicher Anteile der Bis(aryl)platin(II)-Verbindungen prinzipiell deshalb nicht vermeiden, weil die Aktivierungs-Enthalpie der Substitution des noch vorhandenen Chloro-Liganden im primär gebildeten (Aryl)(chloro)bis(ligand)platin(II) im allgemeinen erheblich niedriger ist als diejenige der Substitution des ersten Chloro-Liganden im Dichlorobis(ligand)platin(II) [5].

2. Durch Acidolyse eines Aryl-Liganden im Bis(aryl)bis(ligand)platin(II) mit äquimolaren Mengen einer Lösung von Chlorwasserstoff in Diethylether [5-7]; auch dieses Verfahren liefert durch die Entstehung mehrerer Nebenprodukte – besonders aber durch Acidolyse beider Aryl-Liganden – meist nur mäßige Ausbeuten und erfordert aufwendige Trennoperationen.

Wegen dieser Nachteile haben wir die generalle Übertragbarkeit des für die Darstellung von Bis(aryl)bis(ligand)platin(II)-Verbindungen bewährten und durch besonders einfache Reaktionsführung ausgezeichneten Verfahrens der Reaktion von (Aryl)trimethylstannan [8,9] bzw. (Aryl)tri(n-butyl)stannan [1,10,11] mit Dichlorobis(ligand)platin(II) auf die Darstellung der substituierten (Chloro)(naphthyl)bis-(ligand)platin(II)-Verbindungen insbesondere mit sterisch am Reaktionszentrum beeinträchtigten Naphthyl-Liganden untersucht. Tatsächlich konnten aus äquimolaren Mengen von im Naphthyl-Liganden substituiertem Trimethyl(1-naphthyl)stannan (1) bzw. Tri(n-butyl)(1-naphthyl)stannan (2) und Dichloro(1,2,5,6-n⁴cycloocta-1,5-dien)platin(II) (3) [12] (nachfolgend als [Pt(COD)Cl₂] abgekürzt) bzw. Dichloro(2,3,5,6- η^4 -bicyclo[2.2.1]hepta-2,5-dien)platin(II) (4) [13] (Abk. $[Pt(NBD)Cl_2]; NBD = Norbornadien)$ die entsprechend substituierten Verbindungen Chloro(1-naphthyl)(1,2,5,6-n⁴-cycloocta-1,5-dien)platin(II) (5a-c) bzw. Chloro- $(1-naphthyl)(2,3,5,6-\eta^4-bicyclo[2.2.1]hepta-2,5-dien)platin(II)$ (6a-c) in guten Ausbeuten erhalten werden:

<u>6d</u>

Die – für die einzelnen Verbindungen teilweise erheblich differierenden – Synthesebedingungen sind im experimentellen Teil beschrieben.

Auf gleiche Weise konnte aus $[Pt(NBD)Cl_2]$ und (9-Anthracenyl)tri(n-butyl)stannan auch (9-Anthracenyl)(chloro)(2,3,5,6- η^4 -bicyclo[2.2.1]hepta-2,5-dien)platin(II) (6d) dargestellt werden:

R ₃ Sn-	} + [Pt(η4-[}	Dien)Cl2	$\overset{X}{\underset{Cl}{}}_{l}^{Pt(\eta^4-Dien)}$			
<u>1</u> :R=CH ₃ <u>3</u> Dien=Cycloocta-1,5-dien <u>5a-c</u> <u>2</u> :R=n-C ₄ H ₉ <u>4</u> Dien=Bicyclo[2.2.1]hepta-2,5-dien <u>6a-c</u>						
	<u>5a</u>	<u>5b</u>	<u>5c</u>			
Dien	COD	COD	COD			
х	н-	2-CH3-	2-CH2-CH2-0-			
Ausb. %	69	60 J	62			
	<u>6a</u>	<u>6b</u>	<u>6c</u>			
Dien	NBD	NBD	NBD			
х	H-	2-CH20-	2-CH2-CH2-0-			
Ausb.%	38	45	72			

Schließlich wurde noch der Einfluß des Halogeno-Liganden auf den Reaktionsverlauf getestet. Dazu wurde unter gleichen Bedingungen wie bei der Synthese von 5 [Pt(COD)I₂] mit Tri(n-butyl)(1-naphthyl)stannan umgesetzt und in nur 12% Ausbeute (1,2,5,6- η^4 -cycloocta-1,5-dien)(iodo)(1-naphthyl)platin(II) (7) isoliert.

Mit den beschriebenen Ergebnissen wird belegt, daß die zinn-organische Synthesemethode für die Darstellung der Verbindungen vom Typ Chloro(1naphthyl)(η^4 -dien)platin(II) selbst mit sterisch anspruchsvollen Naphthyl-Liganden anwendbar ist.

Experimenteller Teil

Verwendete Geräte und Methoden wie in Lit. 14. Im Folgenden werden aus Platzgründen nur diejenigen spektroskopischen Daten referiert, die unmittelbar als Grundlagen für Konstitutions- und Konfigurations-Aussagen verwendet wurden; vollständige Daten, gegebenenfalls Spektrenkopien, können für Vergleichszwecke angefordert werden.

Synthesen

Die zinn-organischen Edukte 1 bzw. 2 sowie die Produkte 5 bzw. 6 sind unter den angewendeten Reaktionsbedingungen sauerstoff- und wasser-beständig; die Synthesen erfordern daher – das ist einer der wesentlichen Vorteile des zinn-organischen Syntheseverfahrens – keine besonderen Schutzmaßnahmen.

Chloro(1,2,5,6- η^4 -cycloocta-1,5-dien)(1-naphthyl)platin(II) (5a). Methode A: 0.453 g (1.56 mmol) Trimethyl(1-naphthyl)stannan (1a) [10] und 0.582 g (1.56 mmol) [Pt(COD)Cl₂] (3) [12] in 130 ml CH₂Cl₂ wurden unter Rühren 23 h unter Rückfluß erhitzt. Nach Zugabe von 40 ml Heptan (zur Verbesserung der nachfolgenden Kristallbildung) wurde das gesamte Lösungsmittel im Rotationsverdampfer abgezogen. Der Rückstand wurde in einer 80 cm Säule (2 cm in. Durchm.) an etwa 70 g Kieselgel in CH₂Cl₂ chromatographiert. Ausb. 0.480 g (66%) 5a und 0.061 g (7%) [Pt(COD)(1-naphthyl)₂]. Methode B (zum Ausbeute-Vergleich): Analog zu A aus 0.649 g (1.56 mmol) Tri(n-butyl)(1-naphthyl)stannan (2a) [10] und 0.582 g (1.56

mmol) [Pt(COD)Cl₂] (3) in 130 ml CH₂Cl₂. Reinigung wie unter A. Ausb. 0.502 g (69%) **5a** und 0.066 g (8%) [Pt(COD)(1-naphthyl)₂] [1]; Schmp.: kein nachweisbarer Phasenübergang bis 300 °C, beginnende Zersetzung ab 155 °C. ¹H-NMR (CDCl₃; 60 MHz; CAT, 128 Scans): $\delta = 2.5$ (kompl. m der CH₂ aus COD); 4.6 (m mit ¹⁹⁵Pt,H-Satelliten, ²J[¹⁹⁵Pt,H] = 77 Hz; 2H_{olefin} aus COD *trans*-ständ. zu Cl); 6.0 (m mit ²J[¹⁹⁵Pt,H] = 33 Hz; 2H_{olefin} aus COD *trans* zu Naphthyl); 7.2–8.1 (kompl. m von 6H_{aromat}); 8.3–8.8 (m von 1H_{aromat} *peri*-ständ. zu Pt). IR (KBr, cm⁻¹): 1580, 1550, 1495 (ν [C=C] und Gerüstschw.); 1480, 1430 (δ_{as} , δ_{s} [CH₂]); 795, 780, 770 (γ [C-H_{aromat}]); 650 (γ [C-H_{olefin}]); 320 (ν [Pt-Cl]). MS (Elektronenstoß-Ionisation mit 70 eV Anregungsenergie): $M^+ m/e = 465$ (ber. 465 für ³⁵Cl, ¹⁹⁵Pt). Analyse:

Gef.: C, 46.33; H, 4.02. $C_{18}H_{19}ClPt$ (465.88) ber.: C, 46.41; H, 4.11%. *Chloro(1,2,5,6-n⁴-cycloocta-1,5-dien)(2-methyl-naphth-1-yl)platin(II)* (5b). Analog zu 5a aus 0.500 g (1.43 mmol) [Pt(COD)Cl₂] (3) [12] und 2.245 g (5.20 mmol) Tri(n-butyl)(2-methyl-naphth-1-yl) stannan [10] in 80 ml CHCl₃; 27 h unter Rückfluß; nach Zugabe von 40 ml CH₃OH wurde das gesamte Lösungsmittel entfernt und der Rückstand in CH₂Cl₂ an 70 g Kieselgel chromatographiert. Ausb. 0.410 g (60%), farblose Kristalle vom Schmp. 193° C (Zers.). Infolge Schwerlöslichkeit kein ¹H-NMR-Spektrum registrierbar. IR (KBr): 1480, 1430 (δ_{as} , δ_s [CH₂]); 1450, 1375 (δ_{as} , δ_s [CH₃]); 820, 795, 780, 770, 755, 745 (γ [C-H_{aromat}]); 645, 640 (γ [C-H_{olefin}]); 320 (ν [Pt-Cl]). MS (EI): $M^+ m/e = 479$ (ber. 479 für ³⁵Cl, ¹⁹⁵Pt). Analyse: Gef.: C, 47.64; H, 4.42. $C_{19}H_{21}$ ClPt (479.91) ber.: C, 47.55; H, 4.41%.

Chloro(1,2,5,6- η^4 -cycloocta-1,5-dien)(2-ethoxy-naphth-1-yl)platin(II) (5c). Analog zu **5a** aus 0.47 g (1.26 mmol) [Pt(COD)Cl₂] (**3**) [12] und 0.58 g (1.26 mmol) Tri(n-butyl)(2-ethoxy-naphth-1-yl)stannan [10] in 150 ml CH₂Cl₂; 75 h unter Rückfluß. Aufarbeitung und Reinigung wie bei **5b**. Ausb. 0.395 g (62%), farblose Kristalle vom Schmp. 240 °C (Zers., beginnend bei 180 °C). ¹H-NMR (CDCl₃; 60 MHz; CAT, 256 Scans): 1.55 (t; ³J = 7 Hz; CH₃-CH₂-O-); 2.2–3.0 (m von CH₂-CH₂ aus COD); 4.30 (q; ³J = 7 Hz; CH₃-CH₂-O-); 4.8 (m; 2H_{olefin} aus COD trans-ständ. zu Cl); 5.9 (m mit ¹⁹⁵ Pt,H-Satelliten, ²J[¹⁹⁵ Pt,H] = 37 Hz; 2H_{olefin} aus COD trans zu Naphthyl); 6.9–8.0 (m von 5H_{aromat}); 8.3–8.7 (m von 1H_{aromat} peri-ständ. zu Pt). IR (KBr): 1605 (ν [C=C]); 1580, 1550 (Gerüstschw.); 1490, 1470 (δ_{as} [CH₂], δ_{as} [CH₃]); 1430 (δ_s [CH₂]); 1380 (δ_s [CH₃]); 1215 (ν [C(sp^2)–O]); 1045 (ν [C(sp^3)–O]); 815, 795, 770, 750 (γ [C–H_{aromat}]); 645 (γ [C–H_{olefin}]); 315 (ν [Pt–Cl]). MS (EI): $M^+ m/e = 507$ (ber. 507 für ³⁵ Cl, ¹⁹⁵ Pt). Analyse: Gef.: C, 46.76; H, 4.53. C₂₀H₂₃ClOPt (509.93) ber.: C, 47.11; H, 4.55%.

 $(1,2,5,6-\eta^4$ -Cycloocta-1,5-dien)(iodo)(1-naphthyl)platin(II) (7). Die Synthese wurde zum Ausbeutevergleich zwischen [Pt(COD)Cl₂] und [Pt(COD)I₂] als Edukt durchgeführt. 0.298 g (0.53 mmol) [Pt(COD)I₂] [12] wurden in 50 ml CHCl₃ mit 0.710 g (1.70 mmol) Tri(n-butyl)(1-naphthyl)stannan (2a) [10] 77 h bei 40°C intensiv gerührt. Nach Zusatz von 40 ml CH₃OH wurde gas gesamte Lösungsmittel abgezogen und der kristalline Rückstand zunächst in CH₂Cl₂ an Kieselgel chromatographiert. Das so gereinigte Produkt (0.170 g) enthielt noch Verunreinigungen und wurde daher zweimal aus CH₂Cl₂ und Überschichten mit CH₃OH umkristallisiert und dann nochmals in CH₂Cl₂ an 80 g Kieselgel chromatographiert (hierdurch resultierten erhebliche Ausbeuteverluste). Ausb. 42 mg (12%), gelbe Kristalle, Schmp. 232°C (Zers. ab 218°C). Infolge Schwerlöslichkeit kein ¹H-NMR-Spektrum registrierbar. IR (KBr): Übereinstimmend mit dem Spektrum von 5a, jedoch ohne ψ [Pt-Cl] (320 cm⁻¹). MS (EI): M^+ .

Isotopenverteilung	relative Intensitäten	n	
m/e	ber.	gef.	
554	1.92	2.06	
556	81.23	76.95	
557	100.00	100.00	
558	81.08	80.32	
559	14.50	13.73	
560	19.12	18.09	
561	3.71	3.72	

Analyse: Gef.: C, 35.84; H, 3.08. $C_{18}H_{19}IPt \cdot CH_2Cl_2$ (557.34) ber.: C, 35.54; H, 3.30%.

(2,3,5,6-η⁴-Bicyclo[2.2.1]hepta-2,5-dien)(chloro)(1-naphthyl)platin(II) (6a). 0.42 g (1.17 mmol) [Pt(NBD)Cl₂] (4) [13] und 0.34 g (1.17 mmol) Trimethyl(1naphthyl)stannan (1a) [10] wurden 24 h bei Raumtemp. in 150 ml CH₂Cl₂ intensiv gerührt. Der nach Zugabe von 40 ml CH₃OH und anschließender vollständiger Entfernung des Lösungsmittels verbliebene Rückstand wurde an einer 80 cm Säule Kieselgel (mit 10% H₂O) in CH₂Cl₂ chromatographiert. Das so gereinigte Produkt wurde nochmals in gleicher Weise gereinigt. Ausb. 170 mg (38%), farblose Kristalle, Schmp. 139–141°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz; CAT 164 Scans): 1.8 (kompl. m; CH₂ aus NBD); 4.2 (m; H_{Brückenkopf} aus NBD); 4.9 (m mit ¹⁹⁵Pt,H-Satelliten, ²J[¹⁹⁵Pt,H] = 74 Hz; 2H_{olefin} trans zu Cl); 6.0 (m; ²J[¹⁹⁵Pt,H] = 32 Hz; 2H_{olefin} trans zu Naphthyl); 7.0–7.9 (m von 6H_{aromat}); 8.3–8.7 (m des H_{aromat} *peri*-ständ. zu Pt); gem. Int.-Verh. 2.2/1.9/2.0/6.0/1.0 (ber. 2/2/2/6/1). IR (KBr): 1580, 1550, 1495 (Gerüstschw.); 1435 (δ_s[CH₂]); 1310 (δ[C-H_{Brückenkopf}]); 790, 775, 770 (γ[C-H_{aromat}]); 325 (*v*[Pt-Cl]). MS (FD):

m/e	Isotopenverteilung im Molekülpeak M^+ ; rel. Int.		
	ber.	gef.	
446	1.81	1.86	
448	77.06	76.9 0	
449	93.36	93.24	
450	100.00	100.00	
451	42.96	42.72	
452	42.42	42.39	
453	7.38	7.25	
454	6.05	5.94	
455	1.06	1.08	

Analyse: Gef.: C, 45.62; H, 3.42. C₁₇H₁₅ClPt (449.84) ber.: C, 45.39; H, 3.36%.

(2,3,5,6- η^4 -Bicyclo[2.2.1]hepta-2,5-dien)(chloro)(2-methoxy-naphth-1-yl)platin(II) (6b). Analog zu 6a aus 0.32 g (0.89 mmol) [Pt(NBD)Cl₂] (4) [13] und 1.13 g (2.53 mmol) Tri(n-butyl)(2-methoxy-naphth-1-yl)stannan [10] in 46 ml CH₂Cl₂; 8 h unter Rückfluß. Der nach Zugabe von 20 ml CH₃OH und anschließender Entfernung des gesamten Lösungsmittels verbliebene Rückstand wurde in CH₂Cl₂ an Kieselgel (mit 10% H₂O) chromatographiert. Ausb. 0.19 g (45%) 6b und 0.08 g (15%) [Pt(NBD)(2-methoxy-naphth-1-yl)₂] [1]; Schmp. 158°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 1.7 (m; CH₂ aus NBD); 4.01 (s; CH₃O); 3.9-4.4 (m; 2H_{Brückenkopf} aus NBD); 4.7-4.9 (m mit ¹⁹⁵Pt,H-Satelliten, ²J[¹⁹⁵Pt,H] = 72 Hz; 1H_{olefin} trans zu Cl); 5.1-5.3 (m mit ²J[¹⁹⁵Pt,H] = 72 Hz; 1H_{olefin} trans zu Cl); 5.9 (m mit ¹⁹⁵Pt,H-Satelliten, ²J[¹⁹⁵Pt,H] = 34 Hz; 2H_{olefin} trans zu Naphthyl); 6.9-8.0 (m von 5H_{aromat}); 8.4-8.8 (m von 1H_{aromat} peri zu Pt); gem. Int.-Verh. 2.2/2.8/2.2/1.9/5.1/0.9 (ber. 2/3/2/2/5/1). IR (KBr): 2840 (ν [CH₃O]); 1610, 1580, 1500 (ν [C=C, Gerüstschw.); 1440 (δ_s [CH₂]); 1302 (δ [C-H_{Brückenkopf}]); 1230 (ν [C(sp^2)-O]); 1040 (ν [C(sp^3)-O]); 818, 800, 780, 770, 760 (ν [C-H_{aromat}]); 315 (ν [Pt-Cl]). MS (EI): M^+ m/e = 479 (ber. 479 für ³⁵Cl, ¹⁹⁵Pt). Analyse: Gef. C, 45.06; H, 3.52. C₁₈H₁₇ClOPt (479.87) ber.: C, 45.05; H, 3.57%.

 $(2,3,5,6-\eta^4$ -Bicyclo[2,2,1]hepta-2,5-dien(chloro)(2-ethoxy-naphth-1-yl)platin(II)(6c). Analog zu 6b aus 0.32 g (0.89 mmol) [Pt(NBD)Cl₂] (4) [13] und 1.17 g (2.53 mmol) Tri(n-butyl)(2-ethoxy-naphth-1-yl)stannan [10] in 50 ml CH₂Cl₂. Ausb. 0.32 g (72%) 6c und 0.07 g [Pt(NBD)(2-ethoxy-naphth-1-yl)₂] [1]. Schmp. 168°C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 1.4–1.8 (kompl. m; CH₂ aus NBD und CH₃-CH₂-O-); 3.9-4.6 (m; 2H_{Brückenkonf} aus NBD und CH₃-CH₂-O-); 4.6-4.9 (m mit ¹⁹⁵ Pt, H-Satelliten, ${}^{2}J[{}^{195}$ Pt, H] = 74 Hz; 1 H_{olefin} aus NBD trans zu Cl); 5.2–5.6 (m mit ${}^{2}J[{}^{195}Pt,H] = 74$ Hz; 1H_{olefin} trans zu Cl); 5.9 (m mit ${}^{2}J[{}^{195}Pt,H] = 34$ Hz; 2H_{olefin} trans zu Naphthyl); 6.9-7.5 (m von 5H_{aromat}); 8.4-8.7 (m von 1H_{aromat} peri zu Pt); gem. Int.-Verh. 5.1/3.9/1.0/1.0/2.0/5.2/0.9 (ber. 5/4/1/1/2/5/1). 300 MHz: 1.53 (t; ${}^{3}J = 6.6$ Hz; CH₃); 1.73–1.83 (m; CH₂ aus NBD); 4.14–4.29 (m; $^{2}H_{\text{Brückenkopf}}$ aus NBD und CH₃-CH₂-O-); 4.83 (m mit ¹⁹⁵Pt,H-Satelliten, $^{2}J[^{195}Pt,H] = 78$ Hz; 1H_{olefin} trans zu Cl); 5.33 (m; $^{2}J[^{195}Pt,H] = 78$ Hz; 1H_{olefin} trans zu Cl); 5.82-6.05 (m; ${}^{2}J[{}^{195}Pt,H] = 31$ Hz; $2H_{olefin}$ trans zu Naphthyl); 6.90-7.79 (m von 5H_{aromat}); 8.41-8.58 (m von 1H_{aromat} peri zu Pt); gem. Int.-Verh. 3.2/2.0/4.0/1.0/1.0/5.2/0.9 (ber. 3/2/(2+2)/1/1/5/1). IR (KBr): 1615 $(\nu[C=C]); 1585, 1500 \text{ (Gerüstschw.)}; 1315 (\delta[C-H_{Brückenkopf}]); 1230 (\nu[C(sp^2)-O]);$ 1060 (ν [C(sp^3)-O]); 800, 775, 770, 765, 750 (γ [C-H_{aromat}]); 310 (ν [Pt-Cl]). MS (EI): $M^+ m/e = 493$ (ber. 493 für ³⁵Cl, ¹⁹⁵Pt). Analyse: Gef.: C, 46.17; H, 3.53. C₁₉H₁₉ClOPt (493.89) ber.: C, 46.21; H, 3.88%.

(9-Anthracenyl)(2,3,5,6-η⁴-Bicyclo[2.2.1]hepta-2,5-dien)platin(II) (6d). Analog zu 6b aus 0.46 g (1.28 mmol) [Pt(NBD)Cl₂] (4) [13] und 0.57 g (1.67 mmol) (9-Anthracenyl)trimethylstannan [10] in 65 ml CH₂Cl₂; 7 h bei 0 ° C. Der nach Zugabe von 20 ml n-Heptan und vollständiger Entfernung des Lösungsmittels verbliebene kristalline Rückstand wurde an 80 cm SiO₂ (10% H₂O) in CH₂Cl₂ chromatographiert. Ausb. 0.58 g (91%), gelbe Kristalle vom Schmp. 212 ° C (Zers.). ¹H-NMR (CDCl₃; 60 MHz): 1.62 (m; CH₂ aus NBD); 4.05–4.45(m; 2H_{Brückenkopf} aus NBD); 4.75 (m mit ¹⁹⁵ Pt,H-Satelliten, ²J[¹⁹⁵ Pt,H] = 76 Hz; 2H_{olefin} trans zu Cl); 6.05 (m; ²J[¹⁹⁵ Pt,H] = 32 Hz; 2H_{olefin} trans zu Anthracenyl); 7.20–8.16 (m von 7H_{aromat}); 8.65–9.05 (m von 2H_{aromat} peri zu Pt); gem. Int.-Verh. 1.9/5.6/7.3/2.3 (ber. 2/(2 + 2 + 2)/7/2). IR (KBr): 1615 (ν[C=C]); 1530, 1500 (Gerüstschw.); 1435 (δ_s[CH₂]); 1305 (δ[C-H_{Brückenkopf}]); 805, 780, 760, 745, 735 (γ[C-H_{aromat}]); 315 (ν[Pt-Cl]). MS (EI): M⁺ m/e = 499 (ber. 499 für ³⁵ Cl, ¹⁹⁵ Pt). Analyse: Gef.: C, 50.57; H, 3.37. C₂₁H₁₇CIPt (499.90) ber.: C, 50.46; H, 3.42%.

Dank

Dem Verband der Chemischen Industrie – Fonds der Chemischen Industrie – danken wir für großzügige Förderung.

Literatur

- 1 C. Weisemann, G. Schmidtberg und H.A. Brune, J. Organomet. Chem., 362 (1989) 63.
- 2 R. Hess, G. Schmidtberg und H.A. Brune, Chem. Ber., 118 (1985) 2011 und dort zitierte Literatur.
- 3 R. Klotzbücher und H.A. Brune, J. Organomet. Chem., 299 (1986) 399.
- 4 H.A. Brune, R. Hohenadel und G. Schmidtberg, J. Organomet. Chem., 311 (1986) 27.
- 5 J. Ertl, Dissertation Univ. Ulm, 1982.
- 6 R. Romeo, D. Minitti und S. Lanza, J. Organomet. Chem., 165 (1979) C36.
- 7 R. Romeo, D. Minitti und S. Lanza, Inorg. Chem., 17 (1978) 2813.
- 8 C. Eaborn, H.L. Hornfeld und D.R.M. Walton, J. Chem. Soc B, (1967) 1036; J. Organomet. Chem., 10 (1967) 529.
- 9 C. Eaborn, K.J. Odell und A. Pidcock, J. Chem. Soc., Dalton Trans., (1978) 357.
- 10 C. Weisemann und H.A. Brune, J. Organomet. Chem., 361 (1989) 299.
- 11 C. Weisemann, Dissertation Univ. Ulm, 1987.
- 12 H.C. Clark und L.E. Manzer, J. Organomet. Chem., 59 (1973) 411.
- 13 D.W. Wertz und M.A. Moseley, Spectrochim. Acta, 36 A (1980) 467.
- 14 R. Baumgärtner, G. Laube, G. Schmidtberg und H.A. Brune, J. Organomet. Chem., 332 (1987) 221.